

B. Pospichal, Universität zu Köln W. Schimmel, Universität Leipzig M. Hajipour, TROPOS

CCRES Workshop, Online – May 3-5th, 2022

Observations of the wind profile using Doppler lidar and Doppler cloud radar

Bernhard Pospichal, Marcus Müller, Stefan Kneifel

Universität zu Köln

Motivation

- Profiles of the horizontal wind can be obtained by ground-based remote sensing
 - Radar wind profiler (RWP)
 - Doppler wind lidar (DWL)
 - Doppler cloud radar (DCR)

ACTRIS cloud remote sensing network can provide wind profiles (DWL, DCR)

ACTRIS CCRES workshop

Wind profiles - Methodology

 3D wind vector can be derived from off-zenith azimuth scans by analyzing the Doppler shift along the line of sight ("VAD scan" Velocity Azimuth Display)

Holleman et al., 2005

Methodology

- Detection needs tracers that float with the air flow
 - RWP: Clear-air fluctuations of the refractive index (Bragg scattering)
 - DCR tracers: Cloud particles, Insects
 - DWL tracers: Aerosols
- Problems/Limitations:
 - Absence of tracers
 - Fall speed of particles (esp. rain)
 - Own movement of tracers (insects)
 - Attenuation of signal (esp. by clouds for DWL)
 - Assumption of homogeneous wind field (turbulence)
- Combination of methods (DCR+DWL) increases coverage

05.05.2022

ACTRIS CCRES workshop

Combined product for wind profiles

- Doppler lidar VAD scan
 - zenith angle 15°, every 15 minutes
 - 10 degrees angular resolution, spatial resolution 30 m
- Cloud radar VAD scan
 - zenith angle 8°, every 30 minutes
 - ~5 degrees angular resolution, spatial resolution 30 m

Combined product

- if both methods are available, a weighted mean of both speed and direction is used depending on the uncertainty of the fit
- 26 m vertical resolution, 30 min temporal resolution

2 years of observations at JOYCE (Jülich Observatory for Cloud Evolution)

Data availability per season

blue: winter, green: spring, red: summer, yellow: fall

Data availability

Example day 10.03.2021

• Wind lidar (0-2 km)

12

18

180 225 270 315 360

24

Cloud radar (0-12 km)

ACTRIS CCRES

Example day 10.03.2021

• Data availabilitv vs. height

Example day - Wind direction

Example day - Wind speed boundary layer

data overview 2020-10-01 to 2020-11-01

monthly overview

Statistics: Mean horizontal wind speed per season

blue: winter, green: spring, red: summer, yellow: fall, black: all

ACTRIS CCRES workshop

Statistics: Diurnal cycle of wind

Wind direction profiles

ACTRIS CCRES workshop

Wind roses

Application: Insect detection

- Insects are efficient targets to produce radar backscatter due to their size (1mm-1cm)
- Lidar backscatter is not affected by insects
- During warm periods (roughly T > 10°C), the Doppler radar signal is dominated by insects
- Comparison between radar and lidar allows the detection of insects and their speed

Insect detection

Insect detection

Courtesy Katharina Weiß

Difference wind speed

blue: winter, green: spring, red: summer, yellow: fall, black: all year

ACTRIS CCRES workshop

Summary

- Wind profiles with a temporal resolution can be derived from a combination of Doppler lidar and Doppler cloud radar
- Synergy gives better coverage than for single instruments
- Future: New product for ACTRIS Cloudnet stations
- Several applications
 - Satellite validation
 - Insect detection
 - Model evaluation

Thank you !

UNIVERSITÄT LEIPZIG

Leipzig Institute for Meteorology

VOODOO: REVEALING SUPERCOOLED LIQUID BEYOND LIDAR ATTENUATION

from vertically-pointing cloud radar observations using artificial neural networks

ACTRIS Talk

May 5, 2022

LEIPZIG

W. Schimmel, H. Kalesse-Los, T. Vogl, M. Maahn, A. Foth, P.S. Garfia, P. Seifert*

Maßnahme wird mitfinanziert durch Steuermitte auf Grundlage des von den Abgeordneten des Sächsischer andtags beschlossenen Haushaltes

How to quantify the thermodynamic phase of clouds?

Lidar

- profiles of attenuated backscatter (& depolarization)
- most sensitive to numerous small liquid droplets:
 attenuated backscatter coefficient: β ~ N, D²
- full signal attenuation at optical depth: τ~3

Doppler cloud radar

- spectral profiles of reflectivity and radial velocity
- most sensitive to large ice crystals:

equivalent radar reflectivity: $Z_e \sim N$, D^6

able to penetrate optically thick cloud layers

Observations from Punta Arenas, Chile and Leipzig, Germany

SCL ... supercooled liquid INP ... ice nucleating particles

LEIPZIG

Case study from 1. August 2019, Punta Arenas, Chile

UNIVERSITAT willi.schimmel@uni-leipzig.de

30

Hydrometer Classification: Cloudnet

Synergistic retrieval, producing cloud properties at high temporal and vertical resolution

required instruments:

- Doppler Cloud Radar (moments)
- Lidar (attenuated backscatter)
- Microwave Radiometer (LWP, IWV)
- Model data: ECMWF (temperature, pressure)

retrieved products:

LEIPZIG

- categorization (averaged profiles, common grid, ...)
- atmospheric target classification (aerosol, ice, liquid, ...)
- quality control flag (instrument availability, corrections, ...)

LWP ... liquid water path IWV ... integrated water vapor

[Illingworth et al. BAMS 2007, Tukiainen et al. 2020]

ECMWF ... European Centre for Medium-Range Weather Forecasts 31 GDAS ... Global Data Assimilation System CD ... Cloud droplets

UNIVERSITÄT willi.schimmel@uni-leipzig.de

New Machine Learning Approach

Feature sampling

- use 6 consecutive (high res.) spectra, each range gate
 = 30 sec time-spectrograms
- noise/fill-values replaced by radar sensitivity limit
- 3D Doppler spectra S → 4D features X:
 - $\dim(S) = (n_{\text{time}}, 289, 256)$
 - $\dim(X) = (n_{\text{samples}}, 256, 6, 1)$
- normalization: $||X||_{(-50,+20)[dBZ]} \Rightarrow ||X|| \in [0,1]$
- encode corresponding Cloudnet label* y:
 - $y("CD") = (1 \ 0)^T$ or $y("no-CD") = (0 \ 1)^T$
- no manual feature extraction nor labeling

Punta Arenas, Chile: 1. August 2019 at 2.4 km

Cloudnet label* ... only good radar and lidar echos

Machine Learning Model Architecture

LEIPZIG

Case study of 1. August 2019, Punta-Arenas, Chile

UNIVERSITÄT willi.schimmel@uni-leipzig.de

LEIPZIG

Distribution as function of correlation coefficient of LWP

Result:

- frequency for higher correlation coefficient r_{LWP}^2 increases for VOODOO predictions
- best performance for LWP $> 100 \text{ g m}^{-2}$
- > VOODOO able to accurately identify liquid layers beyond lidar attenuation

LEIPZIG

Summary

Remote-Sensing + Machine Learning

- Goal: Better estimation of ice/liquid distribution.
- VOODOO able to relate spectral morphologies to the availability of cloud droplets.
- Shows ability to extend the classification beyond full lidar attenuation.
- Future usage:
 - different geographical regions (Arctic data sets)
 - different Doppler radar (MIRA-35/KAZR/MWACR)
- Outlook: VOODOO as feature for Cloudnet

github.com/remsens-lim/Voodoo

REMOTE SENSING & DEEP LEARNING

Retrieval of shape and orientation of multiple hydrometeor types from observations of scanning hybrid-mode Ka-band cloud radar

Majid Hajipour¹

Cloud Remote Sensing Community workshop Tuesday 3rd and Thursday 5th May 2022

Co Author: Patric Seifert¹

1: Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Motivation: shape retrieval idea in mixed-phase clouds

Layered clouds, 30 Oct 2014, Cabauw, Netherlands

Size-fall velocity relationships

......

Large

Majid Hajipour (hajipour@tropos.de), CCRES workshop

Pfitzenmaier et al. (2018)

ACCEPT campaign

Analysis of the Composition of Clouds with Extended

Polarization Techniques

- 6-week measurement campaign at CESAR obs., Cabauw
- Vert. pointing LDR-mode Mira-35 (TROPOS)
- Scanning STSR-mode Mira-35 (TROPOS/Metek)
- Tilted full polarimetric S-band TARA (TU Delft)
- **ds** + Lidars, MWR, Doppler lidar, wind profiler, radiosondes

Majid Hajipour (hajipour@tropos.de), CCRES workshop

TROPOS

Original shape retrieval approach: Main peak of Doppler spectrum

Correlation Coefficient (RHO_HV) for each Doppler part

Majid Hajipour (hajipour@tropos.de), CCRES workshop

48

TROPOS

Retrieval results

Date: 2014.11.03 Time: 20:00-20:15

orientation

0.8

0.6

7000

6000

2.2

2

polarizability ratio

7000

6000

Majid Hajipour (hajipour @tropos.de), CCRES workshop

polarizability ratio

7000

6000

orientation

0.8

0.6

7000

6000

2.2

2

49

TROPOS

Summary

- Scanning polarimetric cloud radar enables us to retrieve shape and orientation of ice particles.
- Using spectrally resolved approach, multiple hydrometeor types can be retrieved.
- Automatic retrieval exists
- Based on one 5-minute RHI scan of ZDR and RHV, information about shape distribution can be obtained regularly
- Quantitative approach which can be applied to STSR(hybrid-mode) polarimetric (cloud) radars.

Thanks foryour attention!

Majid Hajipour (hajipour@tropos.de), CCRES workshop

TROPO