

Status and data availability from IMP 2022/2024

nilu

Wenche Aas, Crist Amelynck, Benjamin Bergmans, Anja Claude, James Dernie, René Dubus, Yao Ge, Heidi Hellén, Lukas Kesper, Dieter Klemp, Jean-Iuc Jaffrezo, Thuy Vu Nguyen, Jean-Philippe Putaud, Stefan Reimann, Pontus Roldin, <u>Therese Salameh</u>, David Simpson, Sverre Solberg¹, Svetlana Tsyro, Ågot Watne, <u>Robert Wegener</u>, Ana Yanez, Karl Espen Yttri and more to add

Overview of measurements

- 30 sites, of these 17 sites measured all VOC groups (NMHCs, Aromatics, O-VOCs, monoterpenes) while 23 sites analyzed organic tracers.
- More than **120 VOC species** and 47 tracers
- A draft paper is in progress to be submitted in May 2025
 - Aim to describe the effect this heatwave had on the VOC, ozone and PM levels

Data selection (several method measure same compounds)

• Non-Methane Hydrocarbons (NMHC):

- C2–C6 range: Data from canisters and GC/FID monitors were used. Monitor data were prioritized
- C7–C12 Range: Data from Tenax tubes and GC/FID monitors were used. Monitor data were prioritized
- Isoprene: Data from canisters and GC/FID + PTR-MS monitors were used. Monitor data were prioritized

• Aromatic hydrocarbons.

Data were collected from canisters, Tenax tubes and monitors. Monitor data was prioritized. Benzene and toluene data from canisters were prioritized before Tenax tubes, while Tenax tubes for the other aromatic compounds.

• Terpenes:

Monoterpenes were collected from Tenax tubes and PTR-MS. Tenax tube data were prioritized Sesquiterpenes data were exclusively taken from Tenax tubes.

• Oxygenated VOCs:

Data were collected from DNPH cartridges, GC/FID and PTR-MS. DNPH data were prioritized.

• Chemical speciation of aerosols and tracer analysis.

- The tracer analyses were all done at the same laboratory.
- The PM mass and EC/OC were also measured as part of the regular EMEP monitoring. These data are prioritized

Ozone developing during the heat wave in 2022 (daily max)

- Quite good correlation been modelled and observed ozone concentrations during the week (EMEP)
- an average bias for ozone daily maxima with 8%
- slightly higher overestimation (11%) at low concentration sites (below 50 ppb)
- slightly underestimating (-3%) at high concentration (above 80ppb)

Relative contribution of different VOCs

Speciation of VOC groups

(not all VOCs included at all sites)

Potential for ozone and SOA formation

Contribution to OFP:

- isoprene: 33 ± 2%
- O-VOCs: 30 ± 1%
- NMHCs: 29 ± 1%

Contribution to SOAP

- Aromatics:30 ± 1%
- monoterpenes: 27 ± 2%.
- All NMHCs ca 30%

Very crude estimates that does not consider NOx, pH, humidity etc. May not be published

Local ozone production rate

BE0007R

AT0002R

total kOH = 7.5s⁻¹ total kOH = 4.9s⁻¹ total kOH = 3.0s⁻¹

alkane alkene alkyne aromatic terpene
aldehyde ketone alcohol other

Mon Apr 07 16:11:50 2025

Local ozone production rate

2022-07-12

2022-07-15

From: Ehlers et al., Faraday Discuss., 2016, 189, 407-437

BE0007R

DE0007R

ES0019U

ES0021U

FI0050R

GB1055R

FI0050R

IT0009R

IT0009R

CH0053R

• Results

- At one site, maximum ozone values measured rises with simulated ozone production
- Differences between the sites due to
 - Ozone is transported from somewhere else (and not produced on the site)
 - The meteorogical conditions might not favor ozone production at this site
 - Missing VOC data
 - Or the VOC composition may play a larger role ?

GB1055R

GB1055R

... More simulation needed...

"EUROVOC: EUROpe-wide intensive campaign on Volatile Organic Compounds"

2nd pan European intensive measurement period (IMP) on VOCs organized by the TFMM-EMEP/ACTRIS/RIURBANS

To gain deeper insights into VOC emissions, including their temporal development and speciation, by deploying high-resolution measurements at sites near emission sources (e.g., urban, industrial, traffic, harbour, and forest areas)

Period: 1 month - September 2024

RÉPUBLIQUE

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

46 urban and rural sites across Europe (ACTRIS NF, EMEP, GAW, Local Air Quality Monitoring Networks, ACTRIS/ICOS sites): **16** regional background and **30** urban and suburban, mainly background

Collaboration with instrument manufacturers

Contact: Wenche Waas, Thérèse Salameh

nilu

"EUROVOC: EUROpe-wide intensive campaign on Volatile Organic Compounds"

2nd pan European intensive measurement period (IMP) on VOCs organized by the TFMM-EMEP/ACTRIS/RIURBANS

Data submission status: data from 32 sites received or directly submitted to EBAS (for ACTRIS sites)

RÉPUBLIQUE

FRANCAISE

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

Online measurement at all the sites with additional offline measurements, including 14 sites with PTR-MS

From the received data: 14 sites measured OVOC and 1 site measured terpenes

 O_3 and NO_x also measured at the majority of the sites and more compounds at some sites : PM, CO, CO₂, CH₄...

nilu

Figure : Overview of participant sites (Photos: ACTRIS NF (Hohenpeissenberg - Allemagne), AASQA (Atmo Grand Est – France), EMEP/ICOS/ACTRIS NF (Vielsalm & Space Pole sites - Belgique) **IMT Nord Europe** École Mines-Télécom IMT-Université de Lille

Preliminary results: Ozone & NO₂ diurnal profiles observed at many sites

RÉPUBLIQUE FRANÇAJSE

Liberti Egaliti Frateraii

14k Site BIL • DON 12k ISP LHOP . STB 10k n-butane concentration (ppt) ٠ . 8k 6k 4k 2k \odot 0. 2000 4000 6000 8000 0 2-methylpropane concentration (ppt)

RÉPUBLIQUE

FRANÇAJSE

QA/QC done for all received data: in general good quality of the data

VOC QA/QC assessment

1500-

Concentration (ppt)

Correlation between ethane and propane

3000

... But data from some sites have to be strongly investigated before their submission in EBAS

ethene (ppt)

2000

1000

Diurnal variability of VOC to be checked after final validation

Perspectives:

- -Data QA/QC evaluation => submission to EBAS
- -PhD of Félix Moreau at IMT Nord Europe Jan. 2025:
- « DéCOV : Déterminants de la variabilité spatio-temporelle dans l'air ambiant extérieur des Composés Organiques Volatiles : impact sur l'ozone et l'aérosol organique secondaire ».
- -PhD of XX?? at IMT Nord Europe Oct. 2025:
- "Observation-based evaluation of the factors influencing ozone formation across Europe"

THANK YOU